
Formal Verification of Practical MPI Programs

Anh Vo Sarvani Vakkalanka
Michael DeLisi Ganesh Gopalakrishnan

Robert M. Kirby ∗

School of Computing, University of Utah
{avo,sarvani,delisi,ganesh,kirby}@cs.utah.edu

Rajeev Thakur †

Mathematics and Computer Science Division
Argonne National Laboratory

thakur@mcs.anl.gov

Abstract
This paper considers the problem of formal verification of MPI
programs operating under a fixed test harness for safety properties
without building verification models. In our approach, we directly
model-check the MPI/C source code, executing its interleavings
with the help of a verification scheduler. Unfortunately, the total
feasible number of interleavings is exponential, and impractical to
examine even for our modest goals. Our earlier publications for-
malized and implemented a partial order reduction approach that
avoided exploring equivalent interleavings, and presented a veri-
fication tool called ISP. This paper presents algorithmic and en-
gineering innovations to ISP, including the use of OpenMP paral-
lelization, that now enables it to handle practical MPI programs,
including: (i) ParMETIS - a widely used hypergraph partitioner,
and (ii) MADRE - a Memory Aware Data Re-distribution Engine,
both developed outside our group. Over these benchmarks, ISP has
automatically verified up to 14K lines of MPI/C code, producing
error traces of deadlocks and assertion violations within seconds.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program VerificationModel checking

General Terms Verification

Keywords MPI, Message Passing Interface, distributed program-
ming, model checking, dynamic partial order reduction 1

1. Introduction
The Message Passing Interface (MPI) [7] library remains one of
the most widely used APIs for implementing distributed message
passing programs. Its projected usage in critical, future applications
such as Petascale computing [4] makes it imperative that MPI pro-
grams be free of programming logic bugs. While techniques such
as model checking [2] have made great advances in verifying con-
current system models, they are yet to make a discernible dent on

∗ Supported in part by Microsoft, and NSF CNS 0509379
† This work was supported in part by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

code level verification, especially for MPI programs. The goal of
code level (model checking based) verification is to verify a con-
current program by replaying the interleavings of the actual pro-
gram without building verification models. Code level verification
is essential because the act of building and maintaining verification
models from real programs – whether ‘by hand’ or through the use
of automated tools – is impractical. Verification model building has
to be repeated each time the code is tuned. MPI programs, consist-
ing of layers of user library and MPI library function invocations,
are written in languages such as C, C++, and Fortran whose seman-
tics are difficult to mirror in verification models. These semantics
are further affected by compilers and runtimes. Thus, the runnable
object code is often its own best verification model.

In all our discussions of code level verification, we are assum-
ing that the environment of the code is provided by one test har-
ness. The test harness defines the initial state of the program to-
gether with subsequent input (if any) needed by the program dur-
ing execution. Verification that covers all test harnesses is future
work.2 We keep our verification goal modest, not aiming for gen-
eral temporal logic verification, but only for deadlock and local as-
sertion violation detection. Even with these assumptions, the num-
ber of process/thread interleavings grows exponentially, requiring
efficient verification techniques. In practice, however, many of the
thread interleavings are equivalent, consisting merely of commuta-
tions of independent actions.

One of the earliest tools exploiting independence between
thread actions and performing code level model checking for re-
active C programs was Verisoft [6]. Verisoft employed a scheduler
that replayed the program interleavings following a stateless model
checking approach. In the stateless model checking approach, it is
assumed that the program terminates – i.e., the product state space
of the thread executions is acyclic. (If this assumption is not met,
one can still achieve a reasonable degree of debugging by fixing
a depth bound, and conducting verification up to this bound.) In
a stateless model checker, each reachable state of the program is
discovered by executing (the code of) thread transitions.

Suppose a global execution state s is reached, and two thread
actions t1 and t2 are enabled at s. Depending on the particular
implementation method chosen, a stateless model checker may do
one of two things: (i) fork the execution into one that considers t1
first followed by t2, and another that considers t2 first, (ii) employ
an external scheduler that forces an arbitrary interleaving (say, it
picks t1), while noting down alternate interleavings possible at each
point (t2 in our example), and later replaying the execution from the
beginning where it now forces the alternative execution (t2) when
s is re-encountered.

2 Although, for many MPI programs, we have observed that the kind of bugs
we are interested in detecting would be revealed by a fixed test harness.

As noted earlier, without exploiting independence between
thread actions, this strategy results in an exponential number of
interleavings for p processes executing n steps each.3 Verisoft’s
interleaving reduction approach was based on classifying thread
actions statically into global and local. Based on this classification,
it employed a method for interleaving reduction called persistent
set based partial order reduction [5]. Given an execution state s and
a set of thread actions T = {t1 . . . tk} (k ≤ p) enabled at s, a
persistent set Tp ⊆ T is one that guarantees that any sequence σ
of process moves that stays outside Tp leaves Tp enabled along the
execution. For example, if t1 is a local variable update of thread
τ1 and the remaining members of T are arbitrary, then one can
choose Tp = {t1}. As another example, (i) if t1 and t2 of threads
τ1 and τ2 are statements of the form if pred then action involv-
ing global variables in pred and action, and (ii) the firing of t1
disables t2 and vice versa, then one must include both t1 and t2
within Tp. Now the idea behind partial order reduction (POR) is
this: at state s, recursively explore (say, through forking) only the
actions within Tp. In other words, while at state s, do not pursue
all actions within T . Clearly, if we can ensure that | Tp |�| T |,
then a vast reduction in the number of states explored is possible.
Such reduction guarantees soundness in that whatever bugs were
detectable by the full search would still be detected during reduced
search. In essence, for every sequence explored in the full search, a
representative sequence is explored by the reduced search.

The size of the persistent set Tp explored at each state s depends
on the degree of dependence between thread actions at state s. For
instance, if t1 is a[x]++ and t2 is a[x]-- for global variable x,
then both t1 and t2 must be in Tp. This is because a third thread τ3
may trigger a bug depending on whether t1 fires first or t2. How-
ever, dependences may not be statically apparent. As an example,
we may have actions a[x]++ and a[y]-- instead of a[x]++ and
a[x]--, and it may be case that x and y may alias depending on
the outcome of a complex conditional statement. Since it is in gen-
eral very difficult (formally undecidable) to determine such aliases
during static analysis, algorithms such as [6] errored on the side of
caution and assumed that x and y could be aliases (i.e., t1 and t2
depended on each other) in case they could not prove through static
analysis that they did not. This approach is the so called static POR
approach. While conservative, static POR is pessimistic, often giv-
ing no reductions.

These ideas can also be applied to message passing (MPI) pro-
grams. For example, in MPI programs, operation MPI Send(
target1,communicator1,data1) issued by process 1, and op-
eration MPI Send(target2,communicator2,data2) issued by
process 2 become dependent with respect to 4 operation MPI Recv(
ANY,communicator3,var) issued by process 3 if target1 and
target2 evaluate to 3, and all three communicatori (for i be-
tween 1 and 3) evaluate to the same value. If these evaluation out-
comes cannot be determined statically, then a POR algorithm will
conservatively attempt to match the sends with the receives in both
orders – and this may be highly wasteful if indeed the evaluations
do not meet the conditions described above. (Note: In this paper,
due to space limitations, we offer only this brief definition of de-
pendence - see [2] for details: two actions a and b are dependent iff
whenever they are both enabled at state s, (i) the firing of one does
not disable the other, and (ii) their firing sequentially, i.e., a; b or
b; a results in the same state.)

3 The number of possible interleavings is (np)!/((n!)p); but since the
thread actions can have global effects, the number of distinct executions
is even higher.
4 More precisely, one should regard the send/receive match as one “opera-
tion” and consider dependences among these match possibilities.

To alleviate the drawback with static POR, Flanagan and Gode-
froid [3] introduced the idea of dynamic POR (DPOR). We ex-
plain this idea assuming that the interleaving replays are forced
by a scheduler. Consider a scheduler that has produced a trace σ
and now is attempting step tj (say action a[y]-- of some thread j.
The scheduler examines σ to see whether it contains a state s1 from
where an action ti (say a[x]++) of another thread i was executed
such that ti and tj are dependent. Unlike during static POR, the
scheduler, now knowing the concrete values of x and y, can con-
clude precisely whether x == y, and determine the possibility of
dependence accurately. If determined to be dependent, the sched-
uler adds an auxiliary piece of information (called the backtrack set
in [3]) to s1 indicating that when the execution is replayed and s1
is reached, thread tj must be scheduled. This idea, carried till no
more traces are generated, results in every state having expanded
a tight superset (in practice better than achievable through static
POR) of its most optimal persistent set.

While these ideas are promising, and have been successfully
implemented in the context of PThread/C programs [26, 27] and
Java programs [15], the development of a dynamic partial order
reduction algorithm along the lines proposed in [3] proved im-
possible for MPI programs. Briefly (Section 2 has the details),
the reasons are as follows. First, in MPI, the runtime decides which
sends match which receives. Coming to our earlier example, merely
firing operations MPI Send(target1,comm1,data1) from pro-
cess 1 followed by firing MPI Send(target2,comm2,data2)
from process 2 (and firing operation MPI Recv(ANY,comm3,var)
from process 3 at any time) does not guarantee that process 1’s
send will match the receive. Depending on the cluster as well as
the MPI runtime, one or the other of these operations may pref-
erentially match the receive. To wrest control away from these
elements and back to our scheduler, what we do is to (i) de-
termine the maximal set of sends that can match a wildcard re-
ceive, and (ii) once this maximal set has been determined (say
P), rewrite MPI Recv(ANY,communicator3,var), in turn, to
MPI Recv(i,communicator3,var) for every i within P , and
explore all these interleavings (in MPI, such a ‘specific receive’ is
guaranteed to match the next unmatched send issued by i). Second,
MPI barriers have an unusual semantics in that sometimes a ‘send’
issued after a barrier can match a receive issued before the barrier.
After solving these and many other aspects pertaining to MPI, we
finally obtained our algorithm called POE (Partial Order avoiding
Elusive interleavings) implemented in our tool ISP (In-Situ Partial
order), with its features reported in [22–24].

1.1 Our Contributions
Our main contributions in this paper are the algorithmic im-
provements that now allow ISP to handle two practical MPI
programs that serve as our case studies. The first case study,
ParMETIS [8], is a widely used hypergraph partitioner. We can
verify the V3ParkKWay function of ParMETIS (over 14,000 lines
of MPI/C code) for 16 different input drivers (tests). For each of
these tests, the total number of interleavings of the constituent MPI
processes would be impossible to examine. However, employing
the notion of independence, the ISP algorithm discovered that just
one relevant interleaving exists per test, and these can be run in
just under 12 minutes on a high-end workstation. The algorithmic
improvements required for the success of handling this case study
are: (i) improvements to the data structures used by the POE al-
gorithm, and (ii) loop parallelism provided by OpenMP employed
within the execution engine of POE.

Our second case study, MADRE, is a recently described Mem-
ory Aware Data Re-distribution Engine [21]. The reason why
MADRE serves as an interesting data point is as follows. Many
MPI programs are written without the use of any non-deterministic

construct such as a wildcard receive, MPI Waitany, etc. For all
such MPI programs, ISP guarantees to generate exactly one in-
terleaving. However, the converse is not true: even for some MPI
programs that use non-deterministic MPI operations, it is possi-
ble that ISP will generate only one interleaving (for instance, if
this non-deterministic possibility never materializes at runtime).
However, for a program such as MADRE, it was felt that indeed
the non-deterministic possibility will materialize, and we wanted
to discover whether the improved POE algorithm can handle it.
In summary, the number of interleavings for the UnitBred test of
MADRE is actually quite high: n! interleavings for n processes.
We discovered that

• ISP could comfortably handle this many interleavings
• ISP automatically detected a deadlock within the UnitBred test.

This was later discovered (by us) to be a well-documented dead-
lock. However the fact that we did not know of a deadlock pos-
sibility lurking within MADRE, and that we revealed it in less
than one second by performing push-button model checking is
a highly encouraging result.

ISP verified many schemes/tests in MADRE (cycleShiftBred, park-
Bred, etc.) in one interleaving and found no deadlock.

Our own past work on ISP is as follows: [24] a mathematical
description of POE, [23] provides details on handling collectives,
[22] documents how we dealt with MPI’s progress engine, and [16]
presents a redundant MPI barrier removal algorithm. This paper
for the first time answers in the affirmative that ISP can apply to
practical MPI programs, and describes the developments leading to
this result.
Roadmap: The remainder of the paper is organized as follows.
Section 2 discusses some related work. In Section 3, we provide
an overview of ISP and the POE Algorithm. Section 4 documents
our verification effort for MADRE followed by a brief over view
of ParMETIS and its use of MPI in Section 5. Section 6 deals
with the challenges arising when verifying ParMETIS with ISP. We
describe step by step improvements made to ISP to better handle
large applications and provide the experimental results of this study
in Section 7. In Section 8, we conclude the report with the key
lessons that were learned along the experience, as well as provide
several ideas for future research.

2. Related Work
Over the past several years, considerable effort has been put into
building verification tools for MPI programs (e.g., [10,13,25], with
a survey of such tools provided in [17]). However, these tools are
still unable to reliably verify MPI programs. For example, tools
such as Marmot [10] attempt to perturb schedules by inserting
padding delays, but end up missing even extremely simple dead-
lock scenarios, as shown in [24]. While MPI-SPIN [19,20], a model
checker based on SPIN, can detect the kind of errors that ISP does
and also exhaustively explores all the interleavings of the program,
this approach depends on model building effort on part of the user
which we consider impractical. MPI-SPIN does provide a reduc-
tion algorithm called the Urgent Algorithm that allows all MPI
send/receive channels to be treated as rendezvous channels. How-
ever, this algorithm applies only to programs that do not use wild-
card receives. In general, MPI-SPIN relies on SPIN’s POR algo-
rithm which, unfortunately, does not “understand” the commuting
properties of MPI calls. In its favor, MPI-SPIN supports a symbolic
execution facility to compare a sequential algorithm against an MPI
implementation of the very same algorithm to detect numerical in-
accuracies - a feature not supported by ISP.

A dynamic debugging tool for multithreaded programs called
CHESS [14] was recently proposed. Currently, CHESS employs a

context-bounded search approach, as opposed to DPOR. In addi-
tion, CHESS does not run into issues similar to those discussed in
Section 1 concerning MPI’s wildcard receives and barriers. Never-
theless, the success that CHESS has had in debugging several real-
world programs is another indication of the pragmatic advantages
of dynamic code-level model checking over model-based model
checking.

3. ISP Overview
ISP works by intercepting the MPI calls made by the target program
and making decisions on when to send these MPI calls to the MPI
library. This is accomplished by the two main components of ISP:
the Profiler and the Scheduler. An overview of ISP’s components
and their interaction with the program as well as the MPI library is
provided in Figure 1.

The Profiler: The interception of MPI calls is accomplished
by compiling the ISP profiler together with the target program’s
source code. The profiler makes use of MPI’s profiling mechanism
(PMPI). It provides its own version of MPI f for each correspond-
ing MPI function f . Within each of these MPI f , the profiler com-
municates with the scheduler using TCP sockets to send informa-
tion about the MPI call the process wants to make. It will then wait
for the scheduler to make a decision on whether to send the MPI
call to the MPI library or to postpone it until later. When the permis-
sion to fire f is given from the scheduler, the corresponding PMPI f
will be issued to the MPI run-time. Since all MPI libraries come
with functions such as PMPI f for every MPI function f, this ap-
proach provides a portable and light-weight instrumentation mech-
anism for MPI programs being verified.

The ISP Scheduler: The ISP scheduler helps carry out the POE
algorithm. The scheduler has to meet the objectives indicated in
Section 1, namely: G1: the maximal set of sends that can match
a wildcard receive must be determined, and G2: the unusual MPI
barrier semantics must be respected. To help explain these issues,
we first discuss a few examples in Section 3.1. We then begin ex-
plaining the POE algorithm in Section 3.2. As it turns out, the POE
algorithm is based on exploiting MPI’s out-of-order completion se-
mantics. In other words, (i) not all MPI operations issued by a pro-
cess complete in that order, and (ii) a proper modeling of this out-
of-order completion semantics is essential in order to meet goals
G1 and G2. For example, two MPI_Isend commands issued in suc-
cession by an MPI process P1 to the same target process (say P2)
are forced to match in order, whereas if these MPI_Isends are tar-
geted to two different MPI processes, then they may match contrary
to the issue order. As another example, any operation following an
MPI_Barrier must complete only after the barrier has completed,
while an operation issued before the barrier may linger across the
barrier, and actually complete after the barrier! These ideas will be
brought out in the examples in Section 3.1.

These discussions will lead us to observe that the high level
state maintained by the ISP scheduler must include (i) the current
process, (ii) the next “PC” of each process, (iii) whether a process
is at a fence point, (iv) the intra-completes graph of all actions
encountered in each process, and (v) whether an action has been
encountered but not issued into the MPI runtime. These ideas will
be discussed in Sections 3.3 and 3.4. The rest of the paper will
then discuss how the implementation of the POE algorithm was
optimized to help ISP handle practical MPI programs.

3.1 Examples Illustrating ISP
3.1.1 Wildcard Receives
In the short MPI program example in Figure 2, processes P0 and P2
are targeting P1 which entertains a ’wildcard match,’ i.e., can re-
ceive from any process that has a concurrently enabled MPI Isend

Source files

ISP Profiler

Executable
MPI_f

Scheduler
signals

MPI runtime

PMPI_f (w/ goahead
signal from the Scheduler)

ISP

Figure 1. Overview of ISP

P0: MPI Isend(to P1, data = 42); ...

P1: MPI Irecv(*, x); if (x==42) then error1 else ...

P2: MPI Isend(to P1, data = 21); ...

Figure 2. Simple MPI Example Illustrating Wildcard Receives

P0: S0(to P1, h0) ; B0; W(h0);
P1: R(*, h1) ; B1; W(h1);
P2: B2; S2(to P1, h2);W(h2);

Figure 3. Illustration of Barrier Semantics and the POE Algorithm

targeting P1. As soon as one such send is chosen (for example,
P0’s), the other send is disabled. It is not eligible to match with this
receive of P1 (it has to match another receive of P1 coming later).
As pointed out in Section 1, this ‘disabling’ behavior characterizes
dependence. This can be vividly seen from the fact that the particu-
lar send that matches may or may not cause error1 to be triggered.
Consider given i < j < k, and a trace t where the ith action of
t, namely ti, is P2’s send, and similarly tj is P1’s receive, and tk
is P0’s send. In this trace, it is not necessary that P1’s receive is
matched with P2’s send just because ti is executed before tk. MPI
implements its own buffering mechanism that can cause one send
to race ahead of the other send. Formally, unlike in other works
(e.g., [3]), the program order of MPI calls does not imply happens-
before [11] of the MPI call executions. Hence, it is possible that
tj is matched with tk. There is no way in an MPI run-time (short
of making intrusive modifications to the MPI library, which is of-
ten impossible because of the proprietary nature of the libraries) to
force a match either way (both sends matching the receive in turn)
by just changing the order of executing sends from P2 and P0. As
explained earlier, we solve this problem by performing dynamic
rewriting of wildcard receive commands.

3.1.2 MPI Barriers
According to the MPI library semantics, no MPI process can issue
an instruction past its barrier unless all other processes have issued
their barrier calls. Therefore, an MPI program must be designed in
such a way that when an MPI process reaches a barrier call, all other
MPI processes also reach their barrier calls (in the MPI parlance,
these are collective operations); a failure to do so deadlocks the
execution. While these rules match the rules followed by other
languages and libraries in supporting their barrier operations, in the
case of MPI, it is possible for a process Pi to have an operation OP

before its barrier call, and another process Pj to have an operation
OP’ after Pj’s matching barrier call where OP can observe the
execution of OP’. This means that OP can, in effect, complete
after Pi’s barrier has been invoked. This shows that the program
ordering from an operation to a following barrier operation need
not be obeyed during execution. To ensure higher performance,
this behavior is allowed in MPI, as shown by the example in
Figure 3, and requires special considerations in the design of POE.
In this example, one MPI Isend issued by P0, shown as S0(to
P1, h0), and another issued by P2, shown as S2(to P1, h2),
target a wildcard Irecv issued by P1, shown as R(*,h1).5 The
following execution is possible: (i) S0(to P1, h0) is issued, (ii)
R(*, h1) is issued, (iii) each process fully executes its own barrier,
(B0, B1, or B2 are abbreviations for MPI_Barrier), and this
“collective operation” finishes (all the B’s indeed form an atomic
set of events), (iv) S2(to P1, h2) is issued, (v) now both sends
and the receive are alive, and hence S0 and S2 become dependent,
requiring a dynamic algorithm to pursue both matches. Notice that
S0 can finish after B0 and R can finish after B1.

3.2 POE Algorithm Overview
The POE algorithm works as follows. There are two classes of
statements to be executed: (i) those statements of the embedding
programming language (C/C++/Fortran) that do not invoke MPI
commands, (ii) the MPI function calls. The embedding statements
in an MPI process are local in the sense that they have no inter-
actions with those of another process. Hence, under POE, they are
executed in program order. When an MPI call f is encountered, the
scheduler records it in its state; however, it does not (necessarily)
issue this call into the MPI run-time. (Note: When we say that the
scheduler issues/executes MPI call f , we mean that the scheduler
grants permission to the process to issue the corresponding PMPI f
call to the MPI run-time). This process continues until the sched-
uler arrives at a fence, where a fence is defined as an MPI operation
that cannot complete after any other MPI operation following it.
The list of such fences include MPI_Wait, MPI_Barrier, etc., and
are formally defined in [24]. When all MPI processes are at their
own fences, the full extent of all senders that can match a wildcard
receive becomes known, and dynamic rewriting can be performed
with respect to these senders. In the example in Figure 2, Irecv(*)
is written into Irecv(from P0) and Irecv(from P2).

The POE algorithm now forms match-sets. Each match-set is
either a single big-step move (as in operational semantics) or a set
of big-step moves. A set of big-step moves results from dynami-
cally rewriting a wildcard receive. Each big-step move is a set of
actions that are issued collectively into the MPI run-time by the
POE-scheduler (we enclose them in 〈〈..〉〉). In the example of Fig-
ure 3, the match-sets are:
• The set of big-step moves
{ 〈〈 S0(to P1), R(from P0) 〉〉,
〈〈 S2(to P1), R(from P2) 〉〉 }
• The single big-step move
〈〈 B0,B1,B2 〉〉

The POE algorithm executes all the big-step moves (match
sets). The execution of a match-set consists of executing all its con-
stituent MPI operations (firing the PMPI versions of these opera-
tions into the MPI runtime). The set of big-step moves (set of match
sets) is executed only when no ordinary big-step moves are left. In
our example, the big-step move of barriers is executed first. This
priority order guarantees that a representative sequence exists for
each possible interleaving (see [24] for details).

5 While not central to our current example, we also take the opportunity to
illustrate how the handles h0 through h2, and MPI Wait(W) are used.

Once only a set of big-step moves are left, each member of this
set (a big-step move) is fired. The POE algorithm then resumes
from the resulting state.

In our example, each big-step moves in the set
{ 〈〈 S0(to P1), R(from P0) 〉〉,
〈〈 S2(to P1), R(from P2) 〉〉 }
is executed, and the POE algorithm invoked after each such big-
step move.

Thus, one can notice that the POE scheduler never actually
issues into the MPI run-time any wildcard receive operations it
encounters. It always dynamically rewrites these operations into
receives with specific sources, and pursues each specific receive
paired with the corresponding matching send as a match-set in a
depth-first manner.

The following sections discuss the complete-before orderings of
MPI and match-set formations, which are the key areas that were
improved in ISP to handle ParMETIS.

3.3 Completes-Before Ordering
The Completes-Before (CB) ordering accurately captures when
two MPI operations x and y issued from the same process in pro-
gram order are guaranteed to complete in that order. For example, if
an MPI process P1 issues an MPI_Isend that ships a large message
to P2 and then issues MPI_Isend that ships a small message to P3,
it is possible for the second MPI_Isend to finish first. A summary
of the completes-before order of MPI is as follows: (i) Send Or-
der: Two Isends sending data to the same destination complete in
issue order. (ii) Receive Order: Two Irecvs receiving data from
the same source complete in issue order. (iii) Wildcard Receive
Order: If a wildcard Irecv is followed by another Irecv (wild-
card or not), the issue order is respected by the completion order.
(iv) Wait Order: A Wait and another MPI operation following it
complete in issue order. For a formal description of the CB relation,
please see [24].

The POE algorithm represents this ordering between two MPI
operations x and y (in which x completes before y) by storing an
IntraCB edge from x to y.

3.4 Match Sets
First we define match sets and ancestors. An MPI operation x is
defined as a fence if and only if x completes before all other MPI
operations that appeared after x in program order. For two MPI
operations x, y: x is the ancestor of y if and only if x completes
before y.

Match sets play a vital role in the POE algorithm. An MPI
operation instruction is considered matched when it has been given
permission by the scheduler to be fired into the MPI runtime. For
example, a collective operation is matched when POE has collected
all the corresponding collective calls from all the processes that
are supposed to participate in the call. Semi-formally defined, a
match set is a set of big-step moves as described in Section 3.2. For
example, a match set of type Irecv will contain exactly one Isend
and its matching non-wildcard Irecv. However, the tricky part is to
form the match set of type Irecv(*), which represents a wildcard
receive and all of its possible matching sends. POE does this by
starting with a set containing just the wildcard receive in question.
It then seeks the maximal number of additional sends that can be
added to this set, without hitting a fence. Finally the wildcard *
is rewritten into specific instances of process IDs. In addition, in
order for an operation MPI f to be a part of any match-set, all
of f ’s ancestors must have been issued to the MPI run-time (in
order words, all of f ’s ancestors must have been matched earlier).
The exact formation of match-sets is thus governed by two aspects:
(i) which operations ‘go together’ (e.g., a receive statement and a
send that it is sourcing from), and (ii) whether all the ancestors

of a match-set have been issued (to preserve the completes-before
semantics).

We now present our case studies and explain how POE was
optimized in order to model check them.

4. MADRE
MADRE is a collection of memory aware parallel redistribution al-
gorithms addressing the problem of efficiently moving data blocks
across processes without exceeding the allotted memory of each
process. MADRE is an interesting target for ISP because it belongs
to a class of MPI programs that makes use of wildcard Irecvs,6

which potentially could result in deadlocks that can easily go un-
detected due to programming timings (and they sometimes do; in
Section 7.3, we explain one such scenario).

Other than the two algorithms cycleShiftBred and parkBred
mentioned in [21], MADRE also includes several variations of
other data redistribution algorithms, including unitBred, phBred,
and phaseBred. For more details concerning these implementa-
tions, please consult the MADRE manual [18]. Except for unit-
Bred, which we will go into further details later, ISP successfully
verified the whole library to be free of deadlocks under the pro-
vided test inputs that come with MADRE distribution 0.3. ISP also
finished the verification process of each of the aforementioned tests
within seconds, and none of them required more than one interleav-
ing.

4.1 unitBred
unitBred is a very simple implementation for moving data across
processes. However, it is an interesting test target because of its use
of MPI ANY SOURCE and MPI ANY TAG, which requires multiple in-
terleavings to completely test all the possible message matchings.
In fact, for n processes, ISP needs to explore n! interleavings to
verify unitBred completely (This is because of ISP’s overapproxi-
mation of potential senders that can match wildcard receives. This
issue is addressed again in Section 8). ISP was also able to detect
the following unsafe MPI usage pattern within unitBred:

P0: Isend; Wait(); Irecv; Wait();
P1: Isend; Wait(); Irecv; Wait();

Under typical testing conditions where the message sizes are not
large enough, the above pattern usually does not cause any problem
due to the fact that Isends are usually buffered by most MPI
libraries (MPICH2, for example, buffers messages up to 256K).
However, if the MPI implementation does not allow the sends
to buffer and forces the sends to synchronize, the above section
of code will deadlock. This behavior happens when the size of
the messages are larger than the buffer or in the case when the
implementation does not buffer sends at all. Because ISP tries
to form the match-sets when both processes encounter the fence
instructions (Wait in this case) and the Irecvs are not yet issued
by the processes, this unsafe pattern is easily detected. Although
this bug was already known to the MADRE authors, the fact that
ISP could discover it without knowing its existence in advance is a
very encouraging result.

5. ParMETIS
In our verification of ParMETIS, we had to understand the ParMETIS
code only at a superficial level. This supports our point about push-
button verification: that one does not need to spend a huge amount

6 Wildcard receives can be either through the use of MPI ANY SOURCE, or
MPI ANY TAG, or any combination of the two. ISP is capable of handling
both of them.

of time learning the inner working of the target program to be able
to verify it using ISP.

ParMETIS is a parallel library that provides implementations
of several effective graph partitioning algorithms. Besides being
a parallel extension of METIS [8], ParMETIS also provides sev-
eral parallel routines that are especially suitable for graph parti-
tioning in parallel computing environment. Graph partitioning is
the problem of partitioning a given graph into k roughly equal sub-
sets, such that the total cost of edges in each subset is minimized.
While graph partitioning is an NP-complete problem, most graph
partitioning routines of ParMETIS belong to the multilevel graph
partition algorithms class, which offer excellent partitioning at an
acceptable level of computational complexity. At a high level of
description, multilevel graph partitioning works by collapsing ver-
tices and edges of the original graph into a much smaller graph,
a process called coarsening. The algorithm then attempts to parti-
tion this coarsened graph, which is a much easier task. Finally, this
partitioning is gradually refined through some refinement heuristics
as it is projected into the bigger graphs through the uncoarsening
phase.

Parellization of a multilevel graph partition algorithm is a dif-
ficult task. The coarsening/uncoarsening phase requires that nodes
and edges be merged/unmerged. Since vertices and edges are dis-
tributed randomly across multiple processes, this requires a lot of
communications. Most refinement heuristics are also hard to paral-
lelize [9]. Despite these difficulties, ParMETIS manages to imple-
ment some very efficient parallel routines for graph partitioning.
More details on ParMETIS and its performance can be obtained
in [8].

6. Model Checking ParMETIS
We attempted to apply ISP on ParMETIS to verify the routines
for freedom of deadlocks as well as resource leaks. After several
improvements and optimizations (detailed below), ISP was able to
verify all routines of ParMETIS without the need of any manual
modeling effort. ParMETIS was verified to be free of deadlocks
and resource leaks in just one single interleaving. We also tried to
inject several bugs into ParMETIS (see Section 7.3, and ISP was
also able to discover all these errors.

6.1 The Challenges
Verifying ParMETIS is a challenging task, not only because of
its scale (AdaptiveRepart, one re-partition routine provided by
ParMETIS, has more than 12,000 lines of code between itself and
its helper functions), but also because of the enormous number of
MPI calls involved. In some of our tests, the number of MPI calls
recorded by our POE scheduler exceeded 1.3 million. This class
of applications stresses both the memory usage overhead and the
processing overhead of the scheduler.

Our attempt to improve ISP while working on the large code
base of ParMETIS introduced several challenges at a pragmatic
level. Since we did not have another MPI program debugger – and
especially one that understands the semantics of our ISP scheduler
that was itself being tweaked – we had to spend considerable effort
employing low level debugging methods based on printfs and
similar methods.

6.2 Memory Consumption
In order to replay the execution of the processes and correctly
skipped over all the previous matching of sends/receives, ISP has to
store all the transitions (i.e., the MPI calls) for each processes. This
consumes a considerable amount of memory. The problem was not
very apparent when we tested ISP with the Umpire test suite and
the Game of Life program (reported in [24]), which made fewer

2 4 6 8

0

200

400

600

800

1000

1200

1400

1600

1800

Improvements with Transitive Relation

Orig. ISP
ISP w ith
trans.(ISP
v2)

Number of Processors

T
im

e
 (

in
 m

in
u

te
s

)

Figure 4. Improvements based on transitive reduction

than a hundred MPI calls in our testing. In our several first runs,
ParMETIS exceeded all available memory allocations.

The problem was attributed to the storage taken by ISP’s Node
structure which maintains the list of transitions for each process.
In addition, each transition maintained a list of ancestors which
grew quadratically. We will describe our approach to handling this
problem in Section 7.1.

Forming match sets is a central aspect of POE. One source of
processing overheads in match set formation was located to be the
compiler’s inability to inline the .end() call in loops such as this:

for (iter = list.begin(); iter != list.end();
iter++) {
... do something ...

}

Improvements at this level had marginal effects on ISP’s perfor-
mance.

7. Improvements to POE
7.1 Transitivity of CB relation
It became obvious that searching through hundreds of thousands
of intraCB edges was having a huge effect on ISP’s performance.
We either needed to store less intraCB edges, or search through
less intraCB edges. First, we exploit the fact that ancestor is a
transitive binary relation, and store only the immediate ancestor
relation. As the name suggests, immediate ancestor is the transitive
reduction of the ancestor relation – i.e., the smallest binary relation
whose transitive closure is ancestor. We then realized that the
POE algorithm remained correct even if it employed immediate
ancestors in match-set formation. The intuitive reason for this lies
in the fact that whenever x is an ancestor of y and y is an ancestor
of z, a match set involving y would be formed (and fired) before
one involving z is formed (and fired).

The graph in Figure 4 shows the improvement of ISP in
handling ParMETIS after switching over to the use of immedi-
ate ancestors. The testing setup we employed is similar to the
ptest script provided in ParMETIS 3.1 distribution. To be more
specific, our tests involve running rotor.graph, a file that rep-
resents a graph with about 100,000 nodes and 600,000 edges,
through V3 RefineKWay, followed by a partitioning routine called
V3 PartKway, then the graph is repartitioned again with Adap-

0 8 16 24 32

0

100

200

300

400

500

600

Improvements w. Data Struct. Change

ISP v2
ISP v3

Number of Processors

T
im

e
 (

in
 m

in
u

te
s

)

Figure 5. Improvements made by data structures changes

tiveRepart. The test completes by running through the same routine
again with a different set of options. All the tests were carried out
on a dual Opteron 2.8 GHz (each itself is a dual-core), with 4 GB
of memory. We also show in Table 1 the number of MPI calls this
test setup makes (collectively by all the processes) as the number
of processes increase.

The comparison between the original ISP and the modified ISP
(dubbed ISP v2 in this study) shows a huge improvement in ISP’s
processing time. In fact, without the use of immediate ancestors,
ISP was not able to complete the test when running with eight
processes. Even running one test for 4 processes already took well
over a day! In contrast, ISP v2 finishes the test for 4 processes in
34 minutes.

With the change over from ancestors to immediate ancestors, we
also made additional data structure simplifications, whose impact
is summarized in the graph of Figure 5 (this version of ISP was
termed ISP v3).

Even with these improvements, ISP was still taking consider-
able time to complete model checking ParMETIS for 32 processes,
which is almost ten hours. This led us to consider parallelizing the
search for ancestors.

7.2 Parallel-ISP
The discovery of where ISP spends most of its processing time
leads us to the idea of parallelizing ISP’s search for ancestors
while building the match-sets. Recall that the MPI calls made by
each process of the target program are represented by transition
lists. The formation of match sets requires searching through all
transition lists. Fortunately, these searches are independent of each
other, and can be easily parallelized. There are several ways to
parallelize this process: (i) make a distributed ISP where each ISP
process performs the search for each transition list, or (ii) create

num. of procs Total MPI calls
2 15,789
4 56,618
8 171,912
16 544,114
32 1,390,260

Table 1. num. of MPI calls vs num of processes

0 8 16 24 32

0

100

200

300

400

500

600

Improvements with Parallelization

ISP v3
Parallel ISP

Number of Processors

T
im

e
 (

in
 m

in
u

te
s

)

Figure 6. Improvements made by parallelization

a multithreaded-ISP where each thread performs the search, or
(iii) use OpenMP to parallelize the search and let the OpenMP
run-time handle the thread creation. We opted for the OpenMP
approach due to the fact that the POE scheduler is implemented
with many for loops – a good candidate for parallelization using
OpenMP.

We present the performance results of Parallel ISP vs ISP v3
in Figure 6. Parallelization does not help ISP much when running
with a small number of processes. However, when we verify up to
16 and 32 processes, the benefits of parallelization becomes more
obvious (On average, Parallel-ISP was about 3 times faster than the
serial ISP).

7.3 Handling bugs in large programs
While ParMETIS was verified to be free of deadlocks and asser-
tions violation under some fixed test inputs, we were still interested
in knowing whether ISP would detect such errors should ParMETIS
have them. In order to test ISP’s ability to catch bugs in such a
large program, we deliberately inserted some subtle deadlocks into
ParMETIS’s graph setup module of the RefineKWay routine. The
bug is (over-simplified for illustration) described by the following
pseudocode:

Original code in setup routine:
P0: Irecv (from P1); Irecv (from P2);

Waitall ();
P1: Isend (to P0); Wait();
P2: Isend (to P1); Wait();
P4: ;

‘‘Seeded’’ bug :

P0: Irecv (from *); Irecv (from *);
Irecv (from P4); Waitall ();

P1: Isend (to P0); Wait();
P2: Isend (to P1); Wait();
P4: Isend (to P0);

Obviously the modified code results in a deadlock if the first
or second MPI Irecv of P0 matches the MPI Isend issued by P4.
However, complex timings in a practical program can easily hide
this bug, as shown in the case with this seeded bug in RefineKway:
MPICH failed to deadlock in all of our testing experiments. This

is not surprising at all, considering how easily testing tools have
been observed to miss bugs during the testing of far simpler MPI
program. [24]. However, to our reassurance, our seeded bug was
revealed by ISP during its exploration of the second interleaving
(out of 24 possible relevant interleavings that it would explore un-
der the partial order reduction effected by POE). We also seeded
a bug similar to that discussed in Section 4.1 concerning the algo-
rithm unitBred of MADRE. ISP caught this seeded bug during its
very first interleaving.

8. Conclusions
In this paper, we have reported our efforts on applying ISP, a “push-
button” dynamic model checker for MPI programs, to two practi-
cal MPI programs: ParMETIS and MADRE. Both these programs
were verified for the absence of deadlocks without requiring any
manual modeling effort whatsoever. This is the first formal veri-
fication tool that handles C/MPI programs, employs a customized
dynamic partial order reduction algorithm to consider only the rel-
evant interleavings of an MPI program, and prints error traces sim-
ilar to a model checker when a problem is detected. Our results for
the first time establish that dynamic partial order reduction based
verification methods may play a significant role in verifying API
based concurrent programs written in real programming languages.

In fact, ISP’s scheduler does not even need to be aware whether
the MPI calls are coming from C, C++, or Fortran. The current
version of ISP does not support this language neutrality, but mainly
due to subtle differences in MPI calling conventions; our future
work aims to provide such language neutrality.

Currently, ISP works with most standard-compliant MPI imple-
mentations, and can 7 handle 34 functions of MPI 2.0 (a full list
is provided at [1]). This website also provides the source codes
of all our experiments, as well as for ISP, which may be freely
downloaded. Many more MPI functions can be handled straight-
forwardly (e.g., MPI functions pertaining to the creation and ma-
nipulation of MPI datatypes need not be trapped by ISP at all).

As for our practical case studies, while ParMETIS stresses ISP
on its performance and overhead, MADRE tests ISP on its ability
to catch deadlocks when non-determinism of the MPI runtime is
involved (induced by wildcard receive statements). In the case of
ParMETIS, ISP was able to verify and guarantee that all routines
of ParMETIS are free from deadlock and local assertion violations
under the provided test inputs (we verified up to 32 processes in
our experiments). On the other hand, with MADRE, ISP detected
a bug within one of the routines that could potentially deadlock the
program (the bug was later discovered to be a known problem).

In Section 4.1, we indicated that for MADRE, ISP needs n! in-
terleavings to safely over-approximate potential senders that can
match a wildcard receive. In recent work, we have overcome this
limitation, and are able to finish this example within a single inter-
leaving. The details of this new development will be reported in a
future publication.

To successfully finish our non-trivial case studies, several en-
hancements were made to the POE algorithm employed within ISP.
Apart from numerous data structure and programming improve-
ments aided by profiling studies, two of the most important ad-
vances were: (i) capitalizing on the transitivity of the completes-
before relation to represent only its transitive reduction, in the form
of immediate ancestors, (ii) justifying the correctness of POE even
under this reduction, and (iii) parallelization of the POE sched-
uler using OpenMP, making ISP especially suitable for multi-core
CPUs. Further improvements to ISP are possible to make its sched-
uler even more efficient and scalable. One obvious improvement
would be to fork off the verification of the different elements of

7 ISP has been tested on both OpenMPI and MPICH

a set of match sets (discussed in Section 3.1.2). This type of par-
allelization has already been demonstrated in a related project by
our group [26]. The other aspect of heavy emphasis in our future
work will be bug preserving downscaling methods – ways to sim-
plify an MPI program using static analysis techniques (e.g., reduce
the number of processes represented in it, or even alter the actual
algorithm carried out by the program) such that the class of bugs of
interest (e.g., deadlocks) are preserved. Such downscaling methods
are very promising in terms of the ability to handle even larger MPI
programs.

References
[1] http://www.cs.utah.edu/formal_verification/ISP.

[2] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, Dec. 1999.

[3] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121. ACM, 2005.

[4] A. Geist. Sustained Petascale: The next MPI challenge. Invited Talk
at EuroPVM/MPI 2007.

[5] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An approach to the State-Explosion Problem.
PhD thesis, Universite De Liege, 1994–95.

[6] P. Godefroid, B. Hanmer, and L. Jagadeesan. Systematic software
testing using VeriSoft: An analysis of the 4ess heart-beat monitor.
Bell Labs Technical Journal, 3(2), April-June 1998.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface
standard. Parallel Computing, 22(6):789–828, Sept. 1996.

[8] G. Karypis. METIS and ParMETIS. http://glaros.dtc.umn.
edu/gkhome/views/metis.

[9] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning
scheme for irregular graphs. In SuperComputing (SC), 1996.

[10] B. Krammer, K. Bidmon, M. S. Mller, and M. M. Resch. Marmot: An
MPI analysis and checking tool. In Parallel Computing 2003, Sept.
2003.

[11] L. Lamport. Time, clocks and ordering of events in distributed
systems. Communications of the ACM, 21(7):558–565, July 1978.

[12] A. L. Lastovetsky, T. Kechadi, and J. Dongarra, editors. Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, 15th European PVM/MPI Users’ Group Meeting, 2008,
volume 5205 of Lecture Notes in Computer Science. Springer, 2008.

[13] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou.
MPI-CHECK: A tool for checking Fortran 90 MPI programs.
Concurrency and Computation: Practice and Experience, 15:93–
100, 2003.

[14] M. Musuvathi and S. Qadeer. Fair stateless model checking. In
PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, pages 362–371,
New York, NY, USA, 2008. ACM.

[15] V. Prasad. Scalable and Accurate Approaches to Program De-
pendence Analysis, Slicing, and Verification of Concurrent Object
Oriented Programs. PhD thesis, Kansas State University, 2006.

[16] S. Sharma, S. Vakkalanka, G. Gopalakrishnan, R. M. Kirby,
R. Thakur, and W. Gropp. A formal approach to detect functionally
irrelevant barriers in mpi programs. In Lastovetsky et al. [12], pages
265–273.

[17] S. V. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey
of MPI related debuggers and tools. Technical Report UUCS-
07-015, University of Utah, School of Computing, 2007. http:
//www.cs.utah.edu/research/techreports.shtml.

[18] S. Siegel. The MADRE manual. http://vsl.cis.udel.edu/
madre/.

[19] S. F. Siegel and G. S. Avrunin. Verification of MPI-based software for

scientific computation. In In Proceedings of the 11th International
SPIN Workshop on Model Checking Software, pages 286–303, 2004.

[20] S. F. Siegel and L. F. Rossi. Analyzing BlobFlow: A case study using
model checking to verify parallel scientific software. In Lastovetsky
et al. [12], pages 274–282.

[21] S. F. Siegel and A. R. Siegel. MADRE: The Memory-Aware Data
Redistribution Engine. In Lastovetsky et al. [12], pages 218–226.

[22] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, and R. M. Kirby.
Scheduling considerations for building dynamic verification tools for
MPI. In Parallel and Distributed Systems - Testing and Debugging
(PADTAD-VI), July 2008.

[23] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby,
R. Thakur, and W. Gropp. Implementing efficient dynamic formal
verification methods for mpi programs. In Lastovetsky et al. [12],
pages 248–256.

[24] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby. Dynamic
verification of MPI programs with reductions in presence of split
operations and relaxed orderings. In CAV, volume 5123 of Lecture
Notes in Computer Science, pages 66–79. Springer, 2008.

[25] J. S. Vetter and B. R. de Supinski. Dynamic software testing of MPI
applications with Umpire. In Supercomputing, pages 70–79, 2000.

[26] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Distributed
dynamic partial order reduction based verification of threaded
software. In SPIN,Lecture Notes in Computer Science, pages 58–
75. Springer, 2007.

[27] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Efficient
stateful dynamic partial order reduction. In SPIN, Lecture Notes in
Computer Science, pages 288–305. Springer, 2008.

